Standard forms of delivery, ex warehouse

Plates
Thickness: 12.5 and 25 mm, special thicknesses on request
Length: 1,500 mm, special lengths available
Width: 1,000 mm

Stripping/smaller sizes
On request
Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load
0.30 N/mm²

Continuous and variable loads/operating load range
0 to 0.42 N/mm²

Peak loads (rare, short-term loads)
up to 4.5 N/mm²

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static modulus of elasticity</td>
<td>Based on EN 826</td>
<td>2.6 - 2.7 N/mm²</td>
<td>Tangential modulus, see figure “Modulus of elasticity”</td>
</tr>
<tr>
<td>Dynamic modulus of elasticity</td>
<td>Based on DIN 53513</td>
<td>5.1 - 6.3 N/mm²</td>
<td>Depending on frequency, load and thickness, see figure “dynamic stiffness”</td>
</tr>
<tr>
<td>Mechanical loss factor</td>
<td>DIN 53513</td>
<td>0.14 [-]</td>
<td>Load-, amplitude- and frequency-dependent</td>
</tr>
<tr>
<td>Compression set</td>
<td>Based on DIN EN ISO 1856</td>
<td>4.4 %</td>
<td>Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>Based on DIN EN ISO 1798</td>
<td>2.9 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Elongation at break</td>
<td>Based on DIN EN ISO 1798</td>
<td>210 %</td>
<td></td>
</tr>
<tr>
<td>Tear resistance</td>
<td>Based on DIN ISO 34-1</td>
<td>14.1 N/mm</td>
<td></td>
</tr>
<tr>
<td>Fire behaviour</td>
<td>DIN 4102 DIN EN 13501</td>
<td>B2 E [- [-]</td>
<td>Normal flammability</td>
</tr>
<tr>
<td>Sliding friction</td>
<td>BSW-laboratory</td>
<td>0.6 0.7 [- [-]</td>
<td>Steel (dry) Concrete (dry)</td>
</tr>
<tr>
<td>Compression hardness</td>
<td>Based on DIN EN ISO 3386-2</td>
<td>620 kPa</td>
<td>Compressive stress at 25 % deformation test specimen h = 25 mm</td>
</tr>
<tr>
<td>Rebound elasticity</td>
<td>Based on DIN EN ISO 8307</td>
<td>58 %</td>
<td>dependent on thickness, test specimen h = 25 mm</td>
</tr>
<tr>
<td>Force reduction</td>
<td>DIN EN 14904</td>
<td>50 %</td>
<td>dependent on thickness, test specimen h = 25 mm</td>
</tr>
</tbody>
</table>

Colour: Rose
Load Ranges

Regufoam® vibration

Permanent load in N/mm²

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading.

Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.
Vibration Isolation

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with Regufoam® vibration 570 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency

Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base. Dimensions of test specimens 300 mm x 300 mm.
Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.30 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.30 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.
Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.
Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Modulus of Elasticity

Dynamic Stiffness

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de;
Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. The technical information given in the documents are guideline values. They are liable to manufacturing tolerances, which may vary depending on the type of underlying properties.

We are continuously developing and improving our products and therefore design and specifications in our datasheets may be changed without prior notice.