Regufoam®
Vibration 190 Plus
Standard forms of delivery, ex warehouse
Rolls
Thickness: 12.5 and 25 mm, special thicknesses on request
Length: 5,000 mm, special lengths available
Width: 1,500 mm

Stripping/Plates
On request
Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load
0.018 N/mm²
Continuous and variable loads/operating load range
0 to 0.028 N/mm²
Peak loads (rare, short-term loads)
0.8 N/mm²

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static modulus of elasticity</td>
<td>N/mm²</td>
<td>0.1 - 0.25</td>
</tr>
<tr>
<td>Dynamic modulus of elasticity</td>
<td>N/mm²</td>
<td>0.25 - 0.55</td>
</tr>
<tr>
<td>Mechanical loss factor</td>
<td>[-]</td>
<td>0.25</td>
</tr>
<tr>
<td>Compression set</td>
<td>%</td>
<td>2.0</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>N/mm²</td>
<td>0.4</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>%</td>
<td>220</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>N/mm</td>
<td>2.0</td>
</tr>
<tr>
<td>Fire behaviour</td>
<td>[-]</td>
<td>B2 E</td>
</tr>
<tr>
<td>Sliding friction</td>
<td>[-]</td>
<td>0.7 0.8</td>
</tr>
<tr>
<td>Compressive stress</td>
<td>kPa</td>
<td>22</td>
</tr>
<tr>
<td>Rebound elasticity</td>
<td>%</td>
<td>35</td>
</tr>
<tr>
<td>Force reduction</td>
<td>%</td>
<td>61</td>
</tr>
</tbody>
</table>

Colour: Yellow

Load-, amplitude- and frequency-dependent
Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs

Based on EN 826
Based on DIN 53513
Based on EN ISO 1798
Based on DIN EN ISO 1856
Based on DIN EN ISO 13501
Based on DIN 4102
Based on DIN 53513
Based on DIN EN ISO 3386-2
Based on DIN EN ISO 34-1
Based on DIN 13501
Based on DIN EN ISO 8307
Based on DIN 14904

Tangential modulus, see figure “Modulus of elasticity”
Depending on frequency, load and thickness, see figure “dynamic stiffness”
Load-, amplitude- and frequency-dependent
Normal flammability
Steel (dry)
Concrete (dry)
Load Ranges

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.
Vibration Isolation

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with Regufoam® vibration 190 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Change of dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Natural Frequency

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of Regufoam® vibration 190 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.
Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.
Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.
Long-Term Creep Test

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ±0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of ±0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dimensions of specimens 300 mm x 300 mm x 50 mm